Advances in Kinetic Plasma Simulation with VPIC and Roadrunner

Kevin Bowers*, Brian Albright, Lin Yin, Bill Daughton, Vadim Roytershteyn, Ben Bergen and Tom Kwan Los Alamos National Lab

* Guest Scientist

Overview

The Software

 VPIC: A 3d electromagnetic relativistic particle-in-cell simulation code

The Supercomputer

 Roadrunner: A petascale heterogeneous Cell / Opteron cluster

The Science

- Laser-Plasma Interaction in Inertial Confinement Fusion
- Laser Ion Acceleration
- Magnetic Reconnection

Choir Preaching

Petaflops today

Exaflops in 10 years

Few experimental and observational capabilities will see a comparable increase

Computational science well positioned for discoveries in biology, chemistry, climate, cosmology, energy, materials, plasmas ...

Modern CPUs Optimized for Games

$$\begin{bmatrix} x' \\ y' \\ z' \\ 1 \end{bmatrix} = \begin{bmatrix} r_{xx} & r_{xy} & r_{xz} & t_x \\ r_{yx} & r_{yy} & r_{yz} & t_y \\ r_{zx} & r_{zy} & r_{zz} & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

Floating point intensive games use $\begin{vmatrix} x \\ y' \\ z' \\ 1 \end{vmatrix} = \begin{vmatrix} r_{xx} & r_{xy} & r_{xz} & r_{x} \\ r_{yx} & r_{yy} & r_{yz} & t_{y} \\ r_{zx} & r_{zy} & r_{zz} & t_{z} \\ 0 & 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} x \\ y \\ z \end{vmatrix}$ small matrix / short vector ops in single precision

Single precision 4-vector SIMD (Single-Instruction-Multiple-Data) extensions common

Not optimized for traditional double precision large vector operations

Modern CPUs Optimized for Games

The Speed of Light is Too Slow

3.0 cm

Consider a registered ECC DDR2-DIMM in a node with 3.2 GHz dualissue 4-vector SIMD cores (e.g., Roadrunner)

Characteristic time for a signal at the effective speed of light to travel around the DIMM is ~3.2 ns

This alone is ~10 clocks
Time enough for ~80 flops / core

This is optimistic; many other delays

13.3 cm

The Speed of Light is Too Slow

Overview

The Software

 VPIC: A 3d electromagnetic relativistic particle-in-cell simulation code Modeling capabilities

Comparison with other techniques

Implementation considerations

Helicity dissipation in astrophysical plasma (Bowers and Li, Phys Rev Lett, 2006)

What does VPIC do?

VPIC integrates the relativistic Maxwell-Boltzmann system in a linear background, medium for multiple particle species,

background medium for multiple particle species,
$$\partial_t f_s + c \gamma^{-1} u \cdot \nabla f_s + \frac{q_s}{m_s c} \left(E + c \gamma^{-1} u \times B \right) \cdot \nabla_u f_s = \left(\partial_t f_s \right)_{coll}$$
 rrrr
$$\partial_t E = \varepsilon^{-1} \nabla \times \mu^{-1} B - \varepsilon^{-1} J - \varepsilon^{-1} \sigma E$$
 rr
$$\partial_t B = -\nabla \times E,$$

in time with an explicit-implicit mixture of velocity Verlet, leapfrog, Boris rotation and exponential differencing based on a reversible phase-space-volume conserving 2nd order Trotter factorization.

Direct discretization of f_s is prohibitive; f_s is sampled by particles,

$$d_{t}r_{s,n} = c\gamma_{s,n}^{-1}u_{s,n} \qquad d_{t}u_{s,n} = \frac{q_{s}}{m_{s}c}\left(E\Big|_{r_{s,n}}^{\mathsf{rr}} + c\gamma_{s,n}^{-1}u_{s,n} \times B\Big|_{r_{s,n}}\right).$$

Particles obey the same Boltzmann equation outside of collisions.

A smooth J is extrapolated from the particles; as a result, E, B and J can be sampled on a mesh and interpolated to and from particles.

What does VPIC do?

VPIC integrates the relativistic Maxwell-Boltzmann system in a linear background medium for multiple particle species,

Particles obey the same Boltzmann equation outside of collisions.

A smooth J is extrapolated from the particles; as a result, E, B and J can be sampled on a mesh and interpolated to and from particles.

Initial State

Interpolate *E* and *B*

Write: 72 bytes 0 bytes

Compute: 27 flop

Initial State
Interpolate *E* and *B*

Update u

Read: 0 bytes Write: 0 bytes Compute: 107 flop

Initial State

Interpolate *E* and *B*

Update u

Compute Motion

Read: 0+48 bytes Write: 0+48 bytes

Compute: 42+70 flop

Initial State

Interpolate *E* and *B*

Update u

Compute Motion

Update r and J

Read: 56 bytes Write: 48 bytes Compute: 168 flop

Initial State

Interpolate *E* and *B*

Update u

Compute Motion

Update r and J

Update r and J

Read: 56 bytes Write: 48 bytes Compute: 168 flop

Initial State

Interpolate *E* and *B*

Update u

Compute Motion

Update r and J

Update r and J

Update r and J

Read: 56 bytes Write: 48 bytes Compute: 168 flop

Read: 0 bytes Net Read: $152+56 n_c$ bytes Write: 32 bytes Net Write: $80+48 n_c$ bytes

Compute: 0 flop **Net Compute:** 246+168 n_c flop

Vlasov codes model similar equations

But do not scale to high dimensional systems

Vlasov codes model similar equations

But do not scale to high dimensional systems

Traditional Monte-Carlo easy to parallelize + accelerate

But not suitable for time dependent effects

Vlasov codes model similar equations

But do not scale to high dimensional systems

Traditional Monte-Carlo easy to parallelize + accelerate

But not suitable for time dependent effects

Computational fluid dynamics cheaper

But impossible if the equation of state is unknown

Vlasov codes model similar equations

But do not scale to high dimensional systems

Traditional Monte-Carlo easy to parallelize + accelerate

But not suitable for time dependent effects

Computational fluid dynamics cheaper

But impossible if the equation of state is unknown

Molecular dynamics closely related

But orders of magnitude more expensive ...

MD versus PIC

MD focus is short range

- Necessary when nearby interaction potential energy >> thermal energy
- Difficult for particles to represent many atoms
- Flops / particle / step large (10³ 10⁴)

MD versus PIC

MD focus is short range

- Necessary when nearby interaction potential energy >> thermal energy
- Difficult for particles to represent many atoms
- Flops / particle / step large (10³ - 10⁴)

PIC focus is long range

- Useful when
 nearby interaction
 potential energy <<
 thermal energy
- Approximates short range interactions
- Flops / particle / step small (~10²)

Many particles / node (10⁷ - 10⁸)

- Particle data does not fit in cache
- >90% expense is particle pushing

Many particles / node (10⁷ - 10⁸)

- Particle data does not fit in cache
- >90% expense is particle pushing

Many voxels / node (10⁴ - 10⁵)

- Field data does not fit in cache
- Many particles / voxel (10² 10⁴)

Many particles / node (10⁷ - 10⁸)

- Particle data does not fit in cache
- >90% expense is particle pushing

Many voxels / node (10⁴ - 10⁵)

- Field data does not fit in cache
- Many particles / voxel (10² 10⁴)

Few voxel boundaries crossed / particle / step

Speed of light well resolved and v<c

Many particles / node (10⁷ - 10⁸)

- Particle data does not fit in cache
- >90% expense is particle pushing

Many voxels / node $(10^4 - 10^5)$

- Field data does not fit in cache
- Many particles / voxel (10² 10⁴)

Few voxel boundaries crossed / particle / step

Speed of light well resolved and v<c

Internode communications naturally optimal

 Communication every step, but, because of finite c, data needed on a node already there or nearby

Many particles / node (107 - 108)

- Parti
- >90%

Many v

- Field
- Many

Few vo

Spee

Interno

Com
 data

VPIC isn't like a matrix calculation with O(N³) compute on O(N²) data

Low compute to data motion ratio (~1 flop / byte) makes high performance hard to achieve

Performance limited by local data motion

iceaca on a node aiready there of he

nite *c*,

Absolute particle coordinates

Destroys precision

Bits wasted resolving voxel indices

Slow interpolation

Float - int casts (or worse)

Absolute particle coordinates

Destroys precision

Bits wasted resolving voxel indices

Slow interpolation

Float - int casts (or worse)

Unsorted

Cache misses

particles Field data accessed randomly

coordinates Bits wasted resolving voxel indices

Slow interpolation

Float - int casts (or worse)

Unsorted Cache misses

particles Field data accessed randomly

Advance done with Bandwidth wasted

several passes Data touched several times / step

coordinates

Bits wasted resolving voxel indices

Slow interpolation

Float - int casts (or worse)

Unsorted Cache misses

particles Field data accessed randomly

Advance done with Bandwidth wasted

several passes Data touched several times / step

Each component Bandwidth wasted

stored in own array Small unaligned accesses

Absolute particle coordinates

Destroys precision

Bits wasted resolving voxel indices

Slow interpolation

Float - int casts (or worse)

Unsorted particles

Cache misses

Field data accessed randomly

Advance done with several passes

Bandwidth wasted

Data touched several times / step

Each component stored in own array

Bandwidth wasted

Small unaligned accesses

Field samples used for interpolation

Too few "ways" to keep track

29 diff memory regions accessed / particle

Absolute particle Destroys precision coordina If VPIC were implemented conventionally, ~31 physical **Unsorte** DRAM transfers / particle / particles step and not many flops to show for them Advance several **Need data flow optimization** Each co techniques stored i Field sar for interpolation

Good Ideas

Voxel index + offset Max

particle coordinates

Maximizes precision

Bits conserved; critical in single precision

Fast interpolation

No casts; almost trivial computation

Sorted

particles

Cache hits

Field data approximately streamed

Advance done

in a single pass

Bandwidth conserved

Particle data touched once / step

Similar components

grouped together

Bandwidth conserved

Large aligned accesses

Precompute voxel interpolation coeffs

Many "ways" to keep track

2 diff memory regions accessed / particle

VPIC designed with single precision in mind

Half bytes moved and wider SIMD available

VPIC designed with single precision in mind

Half bytes moved and wider SIMD available

Usually, discretization error >> single precision error

- Single precision okay if very carefully implemented
- Doubles and "numerical hygiene" used as necessary
- Extensive convergence studies and validation against theory, experiment, double precision codes

VPIC designed with single precision in mind

Half bytes moved and wider SIMD available

Usually, discretization error >> single precision error

- Single precision okay if very carefully implemented
- Doubles and "numerical hygiene" used as necessary
- Extensive convergence studies and validation against theory, experiment, double precision codes

Stabilized to the point where each voxel has identical numerical properties regardless how the voxel mesh is translated, oriented or reflected

VPIC decigned with single president in mind

Half

Usually

- Single
- Douk
- External again

Sta identi vox When in single precision, developers care more about arithmetic error

Unlike double precision, ignoring it often leads to catastrophes

We die a little bit on the inside when CPUs and compilers take short cuts (they often do)

ented

lically

odes

has ow the cted

Overview

The Supercomputer

 Roadrunner: A petascale heterogeneous Cell / Opteron cluster Hardware Description

Porting Details

Measured performance

Preliminary 3d Collisional VPIC
Simulation of MRX
(Magnetic Reconnection eXperiment)

Cell Broadband Engine

1 general purpose core, "PPE"

8 special 4-vector SIMD cores, "SPE"

Each SPE can only directly access its 256KB "local store"

Local store like cache but memory transfers explicitly managed by "MFC"

Triblade Compute Nodes

Opteron
cores
one-to-one
with
Cell eDPs
(2 GB/s
bandwidth)

Roadrunner

12,960 Opteron cores - 0.1 Pflop/s (s.p.)

12,960 Cell eDP chips - 3.0 Pflop/s (s.p.)

Porting

Observations

- Most compute in the SPEs
- SPE / Cell DRAM bandwidth (25 GB/s) >>
 SPE / Opteron DRAM bandwidth (2 GB/s)
- Bandwidth off-node same for Cell and Opteron (IB)

Porting

Observations

- Most compute in the SPEs
- SPE / Cell DRAM bandwidth (25 GB/s) >>
 SPE / Opteron DRAM bandwidth (2 GB/s)
- Bandwidth off-node same for Cell and Opteron (IB)

Strategy: Flatten Roadrunner

- All calculations done on Cells
- All data stored in Cell DRAM
- Opterons relay Cell communication and I/O

Each SPE assigned a segment containing a multiple of 16 particles and an exclusive current accumulator

The PPE assigned leftover particles

Each SPE assigned a segment containing a multiple of 16 particles and an exclusive current accumulator

The PPE assigned leftover particles

SPEs stream through segments with triple buffering in blocks of 512 particles

The heart of it all: A 512-line part read-only / part write-back software cache handles random access

- Fully-associative: A line can hold any voxel's data
- Least-recently-used: New data evicts oldest data

The last 512 unique requests guaranteed in cache

The heart of it all: A 512-line part read-only / part write-back software cache handles random access

- Fully-associative: A line can hold any voxel's data
- Least-recently-used: New data evicts oldest data

The last 512 unique requests guaranteed in cache

cache_fetch called on all 512 particles in a new block

- Most are hits; DMA transfers started for misses
- Returns which lines will hold the voxels' data

cache_wait then completes any pending fetches

cache_fetch non-trivial internally but a fast O(1)

Particles processed 16 at a time

 Original x86 4-vector SIMD kernel hand unrolled and modulo scheduled by 4; register file size (128), pipeline hazards and local store limit further unrolling

Kernel Performance

162.0 million cold particles advanced / s / Cell

÷ 10.3 million cold particles advanced / s / Opteron

15.7x speedup

Kernel Performance

- 162.0 million cold particles advanced / s / Cell
- ÷ 10.3 million cold particles advanced / s / Opteron
 - 15.7x speedup
- + 1.8x faster SPE clock rate
- ★ 8.0x more SPE cores than Opteron cores
 - **1.1x** clock-for-clock speedup, in spite of SPE minimalism and VPIC's tuning for x86

Kernel Performance

- 162.0 million cold particles advanced / s / Cell
- ÷ 10.3 million cold particles advanced / s / Opteron
 - 15.7x speedup
- + 1.8x faster SPE clock rate
- ★ 8.0x more SPE cores than Opteron cores
 - **1.1x** clock-for-clock speedup, in spite of SPE minimalism and VPIC's tuning for x86

0.517 Pflop/s on all 18 Roadrunner Connected Units

Need 203,000 Opteron cores for similar performance

Amdahl's Whack-a-Mole

Particle advance accelerated 15.7x

Amdahl's Law: Rest of code relatively more costly

Amdahl's Whack-a-Mole

Particle advance accelerated 15.7x

Amdahl's Street Justice: Rest of code absolutely more costly PPE cores less powerful than Opteron cores

Amdahl's Whack-a-Mole

Particle advance accelerated 15.7x

Amdahl's Street Justice: Rest of code absolutely more costly PPE cores less powerful than Opteron cores

End-to-end performance more sensitive to unaccelerated kernels than conventional platforms. Particle sort and many field update kernels were also SPE accelerated (several fold speedups).

Amdahl bottlenecks are now frequently one-off userprovided application-specific in-situ diagnostics. User experience, improved development models needed.

End-to-End Performance

Two simulations in LPI parameter study (Albright *et al*, Phys Plasmas, 2008) used to benchmark weak scaling

Same physics but 10x faster

Trillion-particle simulations at 0.374 Pflop/s sustained on 17 CUs (Bowers et al, SC08)

Overview

The Science

- Laser-Plasma Interaction in Inertial Confinement Fusion
- Laser Ion Acceleration
- Magnetic Reconnection

For each, a brief overview of current research with VPIC on Roadrunner

Conclusions

Magnetic Island Detachment (Yin et al, Phys Rev Lett, 2008)

Inertial Confinement Fusion

Lasers implode a fusion fuel capsule to "ignite" it; thermonuclear burning plasma

"Minimizing laser-plasma instabilities in the NIF hohlraum is a key to achieving ignition."
- LLNL web site

Inertial Confinement Fusion

LPI (<u>Laser Plasma Interaction</u>) an issue

- Laser scattering: Too little compression
- Laser scattering: Asymmetric compression
- e Preheating: Harder to compress hot plasma

LPI Nonlinear Saturation (Yin et al, Phys Rev Lett, 2007)

The Petascale Challenge

In 2010, ICF ignition experiments start at Livermore's National Ignition Facility (NIF)

The multi-billion dollar question: What is the risk from LPI?

Petascale computing can address this issue

LANL VPIC LPI modeling

LLNL pF3D laser modeling

LLNL Hydra ICF modeling

Computational Science in Action

Linear theory for SRS (Stimulated Raman Scattering) in LPI developed

Drake *et al*, Phys Fluids, 1974

Trident experiments observe unexplained behavior

Montgomery *et al*, Phys Plasmas, 2002

Trident Experiments (527 nm, f/4.5 Gaussian beam, T_e=700eV)

Computational Science in Action

VPIC identifies key physics

Plasma wave bowing, self-focusing, filamentation and trapped particle modulational instability cause rapid onset and saturation (Yin *et al*, Phys Rev Lett, 2007)

Reflectivity agrees with experiment

Simulation insights lead to non-linear SRS theories

Rose and Yin, Phys Plasmas, 2008, Yin *et al*, Phys Plasmas, 2009

VPIC now being used on Roadrunner to understand and predict LPI in NIF

Laser Ion Acceleration

High energy C⁺⁶ beams observed from an ultra-intense short laser pulse incident on a thin foil

Via target normal sheath acceleration process (Hegelich *et al*, Nature, 2006, Albright *et al*, Phys Rev Lett, 2006)

VPIC corroborates and discovers a process for higher energies

Relativistic effects make foil transparent for ultra-high contrast pulses and thinner foils, allowing pulse to "breakout" and accelerate ions (Yin *et al*, Laser and Particle Beams, 2006)

Laser Ion Acceleration

Simulation insights lead to new acceleration theories

Relativistic Buneman instability for linear polarization (Albright et al, Phys Plasmas 2007)

VPIC prediction experimentally confirmed

Prediction drove Trident's redesign Henig *et al*, Phys Rev Lett, 2009 (in press)

Conclusions

Petascale supercomputers can change the way we do science Tapping the potential requires rethinking codes and analysis

Data motion is not free

Supercomputers getting faster but not the speed of light Data flow optimization future proofs codes

VPIC data flow optimized almost 8 years ago yet reserved no structural modifications to realize order-of-magnitude speed Roadrunner

Roadrunner is a glimpse of the future

Routine petascale computations, 100,000+ core parallelism, heterogeneous cores and intermingled compute / memory

Data flow optimization paramount

Acknowledgments

Harris sheet tearing (Yin *et al*, Phys Rev Lett, 2008)

Los Alamos

Research supported in part by the Los Alamos LDRD Program, DOE, NSF and NASA

Special thanks to IBM Roadrunner team (Cornell Wright, Bill Brandmeyer and Chris Engel) for the opportunity to use Roadrunner during early testing

Thanks to Drs. Ken Koch, Hui Li, Jeremy Margulies, Eric Nelson and Tiankai Tu for assistance with slides. Most 3d visualizations performed with EnSight Gold by CEI Inc

Work performed under the auspices of the United States Department of Energy by the Los Alamos National Security LLC Los Alamos National Laboratory under contract DE-AC52-06NA25396

SciDAC 09 / LA-UR-09-03524

Relay Library

Relay Library

